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LETTER TO THE EDITOR 

Sign-constrained linear learning and diluting in neural 
networks 

A M Kohler and D Widmaier 
Institut fiu Theoretide Phyaik der Georg-August-Univasitit, D-34133 GGttingen, 
Federal Republic of Germany 

Received 12 November 1990. in find form 25 M m h  1991 

Abstract. For neural netwoks with predefined effects of the synapse, excitatory 
or inhibitory, the simplex algorithm is applied IY a leaming rule. It is assumed that 
the given signs of the synapses can never he changed during learning. The maximum 
possible dilution of synapses. M a result of the leaming, is found at the maximum 
ntoragc capadty of a model with only positive or randomly distributed s i p .  For the 
case of infinitely many neur&, a replica symmetric calculation of the free energy 
and the distribution of coupling strengths is presentd. The linear algorithm is also 
applied to networks with a more suitable choice of sign constraints, with the result 
of a higher storage capacity. 

Neural networks of formal neurons have been shown to work well as associative 
memories or as trainable input-output machines. The r e m n  for studying those 
systems is twofold. They are interesting technical devices on the one hand and 
a promising concept for understanding the nervous systems of organisms on the 
other hand. In order to get a better insight into the cooperative behaviour of 
neurons, biologically motivated requirements have to be taken into account when 
simple mathematical models are proposed. One of those requirements is the fact 
that excitatory and inhibitory synapses are different and consequently can never be 
transformed into one another. A somewhat stronger, hut very similar, requirement 
was formulated as Dale's law [l] in 1935. Usually all synapses of a neuron only release 
one kind of neurotransmitter and consequently all synapses connecting the axon of this 
neuron with others are of one and the same sign. Amit and co-workers [Z] proposed an 
algorithm for the sign restricted learning problem, which is similar to the Rosenblatt 
perceptron [3]. They also give a proof for convergence. Apparently their algorithm is 
neither very fast in convergence, nor does i t  converge to  any optimal solution. 

In this letter we will formulate sign-constrained learning as a linear optimization 
problem, which uses standard linear programming, and therefore is easy to handle 
and fast converging. We will show its relation to the dilution of synapses, which is 
another biological requirement; neurons in the central nervous system are not fully 
interconnected. We will then give a replica symmetric calculation of the proposed 
model for the case of positive-only synapses. 

Learning rules for attractor neural networks or perceptrons usually produce 
synaptic couplings Jij ( i ,  j = 1,. . . ,N), which stabilize a set of patterns .$' E {-1,l) 
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(a = 1 , .  . . ,p), so that their internal fields hf = N - ’ l a  xi(#;) J i j B  and the respective 
patterns have the same sign 

E[ = hf<f 2 c > 0 . (1 )  

For simplicity only the case of randomly distributed patterns p((f = f l )  = f will be 
considered. We conjecture that the statistics of learning for a model with prescibed 
random signs of synapses can simply be gauge transformed to a model with only 
positive synapses. For neuron i we therefore get N conditions (we may also presume 
non-negative self-couplings): 

Jij)O V j = l ,  ..., N .  (2) 

For a fixed c, say c = 1, and free normalization the condition for a great basin 
of attraction is to have Jij of some minimal norm. Kinzel and Opper [4] define as 
minimal stability for neuron i 

which gives an approximate measure for the size of the basin of attraction (Kepler and 
Abbot [5 ] ) .  This requirement leads to  a quadratic optimization problem, where the 
quadratic norm of J must be minimized. This is used in Adaline learning, formulated 
by Widrow and Hoff [6], or in the AdaTron learning algorithm of Anlauf and Biehl 
[7]. Linear learning has been proposed for the general, not sign restricted, case 
with normdisation ! J !  6 1/fi [gl: nna! formo~a_ton yields a minirnieat,ion of the 
maximum norm of J. In our case the sign of the synapses is positive so we can simply 
minimize the linear norm for neuron i: 

Now the whole problem is linear and can be solved by standard linear programming. 
Geometrically this results in finding a solution of the minimization problem (3), which 
lies on the vertices of the polytype given by (1) and (2),  whereas minimization of a 
quadratic norm would generally find a solution on an edge of the polytype. We find 
solutions up to (I = p / N  = 1. Above this value conditions (1) and (2) do not allow a 
feasible solution. With the result of Cover (91, which states that the total number of 
random uncorrelated conditions that cut off planes in the N-dimensional space cannot 
be higher than 2N in the limit N --t 00, we can say that the probability for finding a 
solution above (I = 1 is vanishing for big systems. This is in accordance with a result 
obtained by Amit and co-workers [IO] with the replica method as used by Gardner 
and Derrida [ll], and also with a result of Nadal [12], obtained with a geometrical 
approach simmilar to [9]. 

Numerical evaluation of the problem shows that the solution is achieved by setting 
a considerable number of synapses to zero, while the rest of them have positive 
values. Figure 1 shows the dilution rate of the synapses and the relative frequency or 
probability of finding a solution as a function of the capacity (I. Asterisks show results 
for positive resricted synapses; connecting lines are spline interpolations and meant 
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a 
Figure 1. Dilution rate q (full c-s) and sue- rate (bmken .u....) over capscity 
01 for t h e  &Rerent restrictions of the signs of Ihe couplings; N = 127. 

as a guide t o  the eye. One can see that a t  the maximum storage capacity, which is 
seen at a = 1, the dilution rate nearly reaches the value 0.5. It is plausible that this 
is also the maximum possible value, because we have 2 N  conditions (1) and (2); N of 
those conditions will be fulfilled automatically; they are linear combinations of each 
other, because the space of {Jj} is N-dimensional. Since patterns and dilution are 
uncorrelated, we conclude that N / 2  of embedding strengths are hrtf  = e, and N / 2  
of the conditions (2) are fulfilled with equality, which means that the dilution rate 
must be 0.5. Surprisingly this is the same value as the critical dilution rate, given by 
Bouten el a/ [13] in a recent paper for the case of quenched dilution and non-restricted 
Jij  (note the difference between quenched and annealed). 

Leaving aside the easy motivation of biology, any single synapse of one neuron 

considered correlations between the sign of the couplings Jij and the stored patterns 
E!. Now we minimize &+)Jijgij, where Jijgij 2 0 and gij = f l  for all i , j .  
Figure 1 gives a comparison between three choices of the  sign restrictions. Hopfield 
sign restrictions with 

co??!d he re.t;ricte.l to "thing that depends on the patterns in gome  way^ $0 we a!m 

11'1 

already increase the capacity; results are plotted as circles in figure 1. The shape of 
the curve remains the same, but for equal a dilution rates are lower. Amazingly the 
maximum capacity considerably exceeds that of randomly or positive-sign-restricted 
J i j ,  which means that although the Hopfield matrix does not allow for retrieval for 
a > 0.14, at least an extensive number of couplings have the right sign for exact 
retrievd of all patterns for a between 0 and = 1.65, where the success rate goes down 
dramatically. Geometrically we interpret the result a8 follows. By choosing a part of 
the couplings with the light sign, the probability of having aset  of linear independent 
conditions (1) and (2) decreases. Thus the effective number of conditions decreases, 
which allows a higher storage capacity. The maximum possible storage Capacity, which 
is ac = 2, was found for sign restrictions of the optimal perceptron (squares), which 
was calculated with the AdaBon algorithm. For a - 2 the dilution rate goes to 
approximately zero, because there is no more freedom for choice of the couplings. For 
smaller a dilution rates are again lower than those of the last curve, but again its 
shape remains similar. 
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For very small (I all three curves meet at almost total dilution. In the limit of 
N -+ 00, only a finite number 0(1) of synapses is needed to satisfy the constraints of 
a finite number of patterns. Simulations were done for systems of size N = 127 and 
all data points were averaged over 100 independent samples. A verification of many 
data points with systems of N = 255 produced good agreement. 

We also checked anti-Hopfield sign restrictions gij = -sign ("t!', but could not 
find a single solution; apparently all conditions are contradictory. Perhaps a solution 

rest would have anti-Hopfield sign. Similarly for the signs of the optimal perceptron, 
higher dilution rates could possibly be achieved for a < 2 by choosing the right amount 
of synapses with the opposite sign. 

We remark that the computer time required to  find the solution of a linear problem 
with the standard simplex algorithm depends on system size as well as on the specific 

found very quickly at data points with high rates of succeas; concerning the necessary 
computer time the linear learning algorithm is comparable to or better than other fast 
converging algorithms such as the AdaTron. Only at data points with low rates of 
success does the computer time increase considerably. 

We now check the asymptotic behaviour of our learning rule for the case of 
positive-only couplings. We calculate the characteristic function g(k) of the probability 
distribution P ( J )  for the resulting couplings in the limit N M. Therefore g(k) is 
written as formal thermodynamic limit of an average over the quenched variables E :  

P I  1 

e.... 1.4 ha f...."A :f ., ....-+ -f +ha 
L""," "C LV".." .L .2 W'LY "L "a.% C""Y ...I Jy n- \.A."_.. .,a.,.. Y L L C  -.e&. "L L."Y.LC.Y, 

rhN.nn ..,:*h +he &-.. ..f U-..Gnl.4 .-h:L +ha 
"l,,,C 

nmhlnm fa- ,-- .e -.e n Yl- ...*- ".... snd Mint" ...... ", [!4j), Fey the given pro&- the ,!&& ces 

where IE stands ior for the smaiiest iinear stabiiity and e(zj ior ihe unit step iunciion. 
The index I E 11,. . . , N} is arbitrary and can later be omitted. Z is given by 

This calculation is technically similar to the Oppers calculation of learning times of 
the MinOver algorithm for the unrestricted perceptron [15]. Here the Hamiltonian H 
of the system is simply the linear norm (4). The helping parameter p ensures in the 
limit p - 00 that H takes its minimum. The average over the can be performed by 
using the replica approach. Introducing replicas J,?, a = 1.. . n, brings us to 

The integrals are evaluated with standard techniques of replica symmetric treatment. 
As the unrestricted perceptron does not show any effects of replica symmetry breaking, 
we do not expect them to occur here,, because the sign-restricted linear problem 
remains convex. The testing field eiLJt has no effect on the saddlepoint, and the 
saddiepoint equations determine the vaiue of ihe or& paiaiiieteis qab = N - I  xj J,?J,b 
and its conjugates rob. Our replica symmetric ansatz needs four parameters q" = 
6,,,q' + q and rab = 6,,,r* + r. To perform the limit p - 00 we use the scaling 
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where U, 8 and 1 are finite. We find the following saddlepoint equations: 

where Dy = h e - y 2 1 2 d y .  Integrals can be reduced to  error functions and n can be 
scaled out, 80 that the four equations can easily be solved numerically. For the free 
energy we find for p -t 00 

((Z”) - 1) = 2tu - 2 s q .  ( 14) 

The free energy is plotted in figure 2; it diverges at a = 1. 
characteristic function g ( k )  is calculated as 

Independently the 

where A = I/&%. The probability distribution is found by back Fourier 
transformation: 

m 
A ’ ( l t 2 d ) ’  P ( J )  = 6 ( J )  1 Dy + 0 ( J ) e -  

-A 

Figure 2. Fhe energy from the replica symmetric calculation (dimcnsbdsas). Note 
the divergence at a = 1. 
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The first term gives the probability that a synapse takes the value zero. Comparing 
this probability with data from simulations produces a good agreement as shown in 
figure 3. The dilution rate as afunction of (I is plotted for both, theory and simulation. 
The second term gives the probability distribution of the strength of the (positive) 
synapses. We do not have maximum pwib le  dilution at  0 < (I < 1, because we would 
expect a convex shaped function for the dilution rate, rather than a concave one, to 
have a greater dilution than Bouten's linear function for the quenched case. In figure 4 

are again given for theory and simulation and once more good agreement is observed. 
me p!nt the distrib..tion for tIy0 ...-!oes ef n, mhere Iye 8Cd.d z sc! thbt q = 1. Ccrve. 

a 
Figure 3. Dilution rate 4 over capacity 01 for the exitatory network after linear 
lemming for theory and simulation with N = 127. 

.I 
Figure 4. Probability distribution of the coupling strengtha after learning, 
normalired to q = 1. Shown are mrw for tho vdum of a for theory and simulation; 
the simulated data wen accmulahd in n m w  ehsnels OKI 100 independent mns. 

It  is not clear which normalization is most appropiate, in terms of c = c/IJI, 
to be a good memure  for the basins of attraction, so one has to be careful when 
comparing stabilities. However, since quadratic stability (3) is the most common, we 
give in figure 5 a comparison between this quantity for our linear solution and the 
optimal quadratic stability for the sign-constrained device, as calculated by Amit and 
co-workers, which is just the result of Gardner and Derrida, with a replaced by a/2 
(broken curve). We scaled our linear stability to  q = 1, so that it is measured in terms 
of (3), and necessarily less than optimal; smooth curves denote theory and asterisk 
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Figure 5. Cjmadratic stability 6: The smooth shows stability of linear theory 
scaled to p = 1 and ssterisk symbols show the ssme for simulation with N = 127. 
The hrohen curves shows optimal q u h t i c  stability M calculated by [lo] (ACW). 

symbols denote simulation data, which support the theory. Both theoretical curves 
are surprisingly close together, at least for a not too small, so that we expect to have 
comparable basins of attraction with a much smaller number of couplings. 

In conclusion, we have shown that on the average the maximum capacity a, = 1 
of a sign-constrained device, where the constraints are uncorrelated to the patterns, 
can be reached with linear programming. Our linear algorithm produced at a = 1 the 
maximum possible dilution of synapses and reasonable dilution for smaller a, with the 
benefit of great stabilities. 

Using methods of replica symmetric theory we calculated the nature of the infinite 
linear learning system of purely exitatory synapses; we found very good agreement 
with simulated systems of a size of the order of a hundred. Furthermore we showed 
that a network or a perceptron with sign constraints of clipped Hopfield can store up 
to  appoximately 1.65N patterns. 

We would like to thank M Opper, A Zippelius, R Kree and S Mertens for inspiring and 
useful discussions. This work was supported by the BRAIN initiative of the commission 
of the European Community. The computer time for the simulations was granted by 
the Forschungszentrum in Julicb, FRG. 
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